17 research outputs found

    Ion channel gene expression in the inner ear

    No full text
    The ion channel genome is still being defined despite numerous publications on the subject. The ion channel transcriptome is even more difficult to assess. Using high-throughput computational tools, we surveyed all available inner ear cDNA libraries to identify genes coding for ion channels. We mapped over 100,000 expressed sequence tags (ESTs) derived from human cochlea, mouse organ of Corti, mouse and zebrafish inner ear, and rat vestibular end organs to Homo sapiens, Mus musculus, Danio rerio, and Rattus norvegicus genomes. A survey of EST data alone reveals that at least a third of the ion channel genome is expressed in the inner ear, with highest expression occurring in hair cell-enriched mouse organ of Corti and rat vestibule. Our data and comparisons with other experimental techniques that measure gene expression show that every method has its limitations and does not per se provide a complete coverage of the inner ear ion channelome. In addition, the data show that most genes produce alternative transcripts with the same spectrum across multiple organisms, no ion channel gene variants are unique to the inner ear, and many splice variants have yet to be annotated. Our high-throughput approach offers a qualitative computational and experimental analysis of ion channel genes in inner ear cDNA collections. A lack of data and incomplete gene annotations prevent both rigorous statistical analyses and comparisons of entire ion channelomes derived from different tissues and organisms. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10162-007-0082-y) contains supplementary material, which is available to authorized users

    Hearing and vestibular deficits in the Coch(-/-) null mouse model: comparison to the Coch(G88E/G88E) mouse and to DFNA9 hearing and balance disorder.

    No full text
    Two mouse models, the Coch(G88E/G88E) or “knock-in” and the Coch(−/−) or “knock-out” (Coch null), have been developed to study the human late-onset, progressive, sensorineural hearing loss and vestibular dysfunction known as DFNA9. This disorder results from missense and in-frame deletion mutations in COCH (coagulation factor C homology), encoding cochlin, the most abundantly detected protein in the inner ear. We have performed hearing and vestibular analyses by auditory brainstem response (ABR) and vestibular-evoked potential (VsEP) testing of the Coch(−/−) and Coch(G88E/G88E) mouse models. Both Coch(−/−) and Coch(G88E/G88E) mice show substantially elevated ABRs at 21 months of age, but only at the highest frequency tested for the former and all frequencies for the latter. At 21 months, 9 of 11 Coch(−/−) mice and 4 of 8 Coch(G88E/G88E) mice have absent ABRs. Interestingly Coch(−/+) mice do not show hearing deficits, in contrast to Coch(G88E/+), which demonstrate elevated ABR thresholds similar to homozyotes. These results corroborate the DFNA9 autosomal dominant mode of inheritance, in addition to the observation that haploinsufficiency of Coch does not result in impaired hearing. Vestibular evoked potential (VsEP) thresholds were analyzed using a two factor ANOVA (Age X Genotype). Elevated VsEP thresholds are detected in Coch(−/−) mice at 13 and 21 months, the two ages tested, and as early as seven months in the Coch(G88E/G88E) mice. These results indicate that in both mouse models, vestibular function is compromised before cochlear function. Analysis and comparison of hearing and vestibular function in these two DFNA9 mouse models, where deficits occur at such an advanced age, provide insight into the pathology of DFNA9 and age-related hearing loss and vestibular dysfunction as well as an opportunity to investigate potential interventional therapies

    Cochlin in normal middle ear and abnormal middle ear deposits in DFNA9 and Coch (G88E/G88E) mice.

    No full text
    DFNA9 sensorineural hearing loss and vestibular disorder, caused by mutations in COCH, has a unique identifying histopathology including prominent acellular deposits in cochlear and vestibular labyrinths. A recent study has shown presence of deposits also in middle ear structures of DFNA9-affected individuals (McCall et al., J Assoc Res Otolaryngol 12:141–149, 2004). To investigate the possible role of cochlin in the middle ear and in relation to aggregate formation, we evaluated middle ear histopathology in our Coch knock-in (Coch(G88E/G88E)) mouse model, which harbors one of the DFNA9-causative mutations. Our findings reveal accumulation of acellular deposits in the incudomalleal and incudostapedial joints in Coch(G88E/G88E) mice, similar to those found in human DFNA9-affected temporal bones. Aggregates are absent in negative control Coch(+/+) and Coch(−/−) mice. Thickening of the tympanic membrane (TM) found in humans with DFNA9 was not appreciably detected in Coch(G88E/G88E) mice at the evaluated age. We investigated cochlin localization first in the Coch(+/+)mouse and in normal human middle ears, and found prominent and specific cochlin staining in the incudomalleal joint, incudostapedial joint, and the pars tensa of the TM, which are the three sites where abnormal deposits are detected in DFNA9-affected middle ears. Cochlin immunostaining of Coch(G88E/G88E) and DFNA9-affected middle ears showed mutant cochlin localization within areas of aggregates. Cochlin staining was heterogeneous throughout DFNA9 middle ear deposits, which appear as unorganized and overlapping mixtures of both eosinophilic and basophilic substances. Immunostaining for type II collagen colocalized with cochlin in pars tensa of the tympanic membrane. In contrast, immunostaining for type II collagen did not overlap with cochlin in interossicular joints, where type II collagen was localized in the region of the chondrocytes, but not in the thin layer of the articular surface of the ossicles nor in the eosinophilic deposits with specific cochlin staining

    Changes in rat n-3 and n-6 fatty acid composition during pregnancy are associated with progesterone concentrations and hepatic FADS2 expression

    No full text
    The mechanisms responsible for changes to long-chain polyunsaturated fatty acid (LC PUFA) status during pregnancy have not been fully elucidated. Tissue samples were collected from virgin and pregnant (day 12 and 20) female rats. LC PUFA status, sex hormone concentrations and hepatic mRNA expression of FADS1, FADS2 and elongase were assessed. Day 20 gestation females had higher plasma and liver docosahexaenoic acid and lower arachidonic acid content than virgin females (P<0.05). There was higher FADS2 mRNA expression during pregnancy (P=0.051). Progesterone and oestradiol concentrations positively correlated with hepatic FADS2 mRNA expression (P=0.043, P=0.004). Progesterone concentration positively correlated with hepatic n-6 docosapentaenoic acid content (P=0.006), and inversely correlated with intermediates in LC PUFA synthesis including n-3 docosapentaenoic acid, ?-linolenic acid and 20:2n-6 (P<0.05). Changes in progesterone and oestradiol during pregnancy may promote the synthesis of LC PUFA via increased FADS2 expression

    The Burden and Benefits of Knowledge: Ethical Considerations Surrounding Population-Based Newborn Genome Screening for Hearing

    No full text
    Recent advances in genomic sequencing technologies have expanded practitioners’ utilization of genetic information in a timely and efficient manner for an accurate diagnosis. With an ever-increasing resource of genomic data from progress in the interpretation of genome sequences, clinicians face decisions about how and when genomic information should be presented to families, and at what potential expense. Presently, there is limited knowledge or experience in establishing the value of implementing genome sequencing into newborn screening. Herein we provide insight into the complexities and the burden and benefits of knowledge resulting from genome sequencing of newborns

    Expression studies of osteoglycin/mimecan (OGN) in the cochlea and auditory phenotype of Ogn-deficient mice

    No full text
    Genes involved in the hearing process have been identified through both positional cloning efforts following genetic linkage studies of families with heritable deafness and by candidate gene approaches based on known functional properties or inner ear expression. The latter method of gene discovery may employ a tissue- or organ-specific approach. Through characterization of a human fetal cochlear cDNA library, we have identified transcripts that are preferentially and/or highly expressed in the cochlea. High expression in the cochlea may be suggestive of a fundamental role for a transcript in the auditory system. Herein we report the identification and characterization of a transcript from the cochlear cDNA library with abundant cochlear expression and unknown function that was subsequently determined to represent osteoglycin (OGN). Ogn-deficient mice, when analyzed by auditory brainstem response and distortion product otoacoustic emissions, have normal hearing thresholds
    corecore